$$$\ln\left(x\right)$$$ 关于$$$e$$$的积分
您的输入
求$$$\int \ln\left(x\right)\, de$$$。
解答
应用常数法则 $$$\int c\, de = c e$$$,使用 $$$c=\ln{\left(x \right)}$$$:
$${\color{red}{\int{\ln{\left(x \right)} d e}}} = {\color{red}{e \ln{\left(x \right)}}}$$
因此,
$$\int{\ln{\left(x \right)} d e} = e \ln{\left(x \right)}$$
加上积分常数:
$$\int{\ln{\left(x \right)} d e} = e \ln{\left(x \right)}+C$$
答案
$$$\int \ln\left(x\right)\, de = e \ln\left(x\right) + C$$$A
Please try a new game Rotatly