Integral of $$$\ln\left(x\right)$$$ with respect to $$$e$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \ln\left(x\right)\, de$$$.
Solution
Apply the constant rule $$$\int c\, de = c e$$$ with $$$c=\ln{\left(x \right)}$$$:
$${\color{red}{\int{\ln{\left(x \right)} d e}}} = {\color{red}{e \ln{\left(x \right)}}}$$
Therefore,
$$\int{\ln{\left(x \right)} d e} = e \ln{\left(x \right)}$$
Add the constant of integration:
$$\int{\ln{\left(x \right)} d e} = e \ln{\left(x \right)}+C$$
Answer
$$$\int \ln\left(x\right)\, de = e \ln\left(x\right) + C$$$A
Please try a new game Rotatly