Integral von $$$10 e^{i k n t t_{1}}$$$ nach $$$t$$$

Der Rechner findet das Integral/die Stammfunktion von $$$10 e^{i k n t t_{1}}$$$ nach $$$t$$$ und zeigt die Schritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int 10 e^{i k n t t_{1}}\, dt$$$.

Lösung

Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=10$$$ und $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$ an:

$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$

Sei $$$u=i k n t t_{1}$$$.

Dann $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (die Schritte sind » zu sehen), und es gilt $$$dt = - \frac{i du}{k n t_{1}}$$$.

Somit,

$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=- \frac{i}{k n t_{1}}$$$ und $$$f{\left(u \right)} = e^{u}$$$ an:

$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$

Das Integral der Exponentialfunktion lautet $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$

Zur Erinnerung: $$$u=i k n t t_{1}$$$:

$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$

Daher,

$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$

Vereinfachen:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$

Antwort

$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A


Please try a new game Rotatly