Integral dari $$$10 e^{i k n t t_{1}}$$$ terhadap $$$t$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 10 e^{i k n t t_{1}}\, dt$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=10$$$ dan $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$:
$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$
Misalkan $$$u=i k n t t_{1}$$$.
Kemudian $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dt = - \frac{i du}{k n t_{1}}$$$.
Integral tersebut dapat ditulis ulang sebagai
$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{i}{k n t_{1}}$$$ dan $$$f{\left(u \right)} = e^{u}$$$:
$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$
Ingat bahwa $$$u=i k n t t_{1}$$$:
$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$
Oleh karena itu,
$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$
Sederhanakan:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$
Tambahkan konstanta integrasi:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$
Jawaban
$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A