$$$t$$$ değişkenine göre $$$10 e^{i k n t t_{1}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$t$$$ değişkenine göre $$$10 e^{i k n t t_{1}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 10 e^{i k n t t_{1}}\, dt$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=10$$$ ve $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$ ile uygula:

$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$

$$$u=i k n t t_{1}$$$ olsun.

Böylece $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (adımlar » görülebilir) ve $$$dt = - \frac{i du}{k n t_{1}}$$$ elde ederiz.

Dolayısıyla,

$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{i}{k n t_{1}}$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$

Hatırlayın ki $$$u=i k n t t_{1}$$$:

$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$

Dolayısıyla,

$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$

Sadeleştirin:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$

İntegrasyon sabitini ekleyin:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$

Cevap

$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A


Please try a new game Rotatly