Integrale di $$$10 e^{i k n t t_{1}}$$$ rispetto a $$$t$$$

Il calcolatore troverà l'integrale/antiderivata di $$$10 e^{i k n t t_{1}}$$$ rispetto a $$$t$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 10 e^{i k n t t_{1}}\, dt$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=10$$$ e $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$:

$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$

Sia $$$u=i k n t t_{1}$$$.

Quindi $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = - \frac{i du}{k n t_{1}}$$$.

Quindi,

$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{i}{k n t_{1}}$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$

L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$

Ricordiamo che $$$u=i k n t t_{1}$$$:

$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$

Pertanto,

$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$

Semplifica:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$

Aggiungi la costante di integrazione:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$

Risposta

$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A


Please try a new game Rotatly