$$$10 e^{i k n t t_{1}}$$$ の $$$t$$$ に関する積分
入力内容
$$$\int 10 e^{i k n t t_{1}}\, dt$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=10$$$ と $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$ に対して適用する:
$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$
$$$u=i k n t t_{1}$$$ とする。
すると $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$(手順は»で確認できます)、$$$dt = - \frac{i du}{k n t_{1}}$$$ となります。
したがって、
$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=- \frac{i}{k n t_{1}}$$$ と $$$f{\left(u \right)} = e^{u}$$$ に対して適用する:
$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$
指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:
$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$
次のことを思い出してください $$$u=i k n t t_{1}$$$:
$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$
したがって、
$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$
簡単化せよ:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$
積分定数を加える:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$
解答
$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A