Integral de $$$10 e^{i k n t t_{1}}$$$ con respecto a $$$t$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 10 e^{i k n t t_{1}}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=10$$$ y $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$:
$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$
Sea $$$u=i k n t t_{1}$$$.
Entonces $$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = - \frac{i du}{k n t_{1}}$$$.
Por lo tanto,
$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{i}{k n t_{1}}$$$ y $$$f{\left(u \right)} = e^{u}$$$:
$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$
La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$
Recordemos que $$$u=i k n t t_{1}$$$:
$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$
Por lo tanto,
$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$
Simplificar:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$
Añade la constante de integración:
$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$
Respuesta
$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A