# Calculadora de integrales definidas e impropias

## Calcula integrales definidas e impropias paso a paso

La calculadora intentará evaluar la integral definida (es decir, con límites), incluida la impropia, con los pasos que se muestran.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need -oo, type -inf.

Enter an upper limit:

If you need oo, type inf.

Please write without any differentials such as dx, dy etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

### Solution

Your input: calculate $\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx$

First, calculate the corresponding indefinite integral: $\int{\left(3 x^{2} + x - 1\right)d x}=x^{3} + \frac{x^{2}}{2} - x$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $\int_a^b F(x) dx=f(b)-f(a)$, so just evaluate the integral at the endpoints, and that's the answer.

$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}=8$

$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=0$

$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}-\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=8$

Answer: $\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=8$