Integralen av $$$10 e^{i k n t t_{1}}$$$ med avseende på $$$t$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$10 e^{i k n t t_{1}}$$$ med avseende på $$$t$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int 10 e^{i k n t t_{1}}\, dt$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=10$$$ och $$$f{\left(t \right)} = e^{i k n t t_{1}}$$$:

$${\color{red}{\int{10 e^{i k n t t_{1}} d t}}} = {\color{red}{\left(10 \int{e^{i k n t t_{1}} d t}\right)}}$$

Låt $$$u=i k n t t_{1}$$$ vara.

$$$du=\left(i k n t t_{1}\right)^{\prime }dt = i k n t_{1} dt$$$ (stegen kan ses »), och vi har att $$$dt = - \frac{i du}{k n t_{1}}$$$.

Alltså,

$$10 {\color{red}{\int{e^{i k n t t_{1}} d t}}} = 10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{i}{k n t_{1}}$$$ och $$$f{\left(u \right)} = e^{u}$$$:

$$10 {\color{red}{\int{\left(- \frac{i e^{u}}{k n t_{1}}\right)d u}}} = 10 {\color{red}{\left(- \frac{i \int{e^{u} d u}}{k n t_{1}}\right)}}$$

Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{10 i {\color{red}{\int{e^{u} d u}}}}{k n t_{1}} = - \frac{10 i {\color{red}{e^{u}}}}{k n t_{1}}$$

Kom ihåg att $$$u=i k n t t_{1}$$$:

$$- \frac{10 i e^{{\color{red}{u}}}}{k n t_{1}} = - \frac{10 i e^{{\color{red}{i k n t t_{1}}}}}{k n t_{1}}$$

Alltså,

$$\int{10 e^{i k n t t_{1}} d t} = - \frac{10 i e^{i k n t t_{1}}}{k n t_{1}}$$

Förenkla:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}$$

Lägg till integrationskonstanten:

$$\int{10 e^{i k n t t_{1}} d t} = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}}+C$$

Svar

$$$\int 10 e^{i k n t t_{1}}\, dt = \frac{10 \left(\sin{\left(k n t t_{1} \right)} - i \cos{\left(k n t t_{1} \right)}\right)}{k n t_{1}} + C$$$A


Please try a new game Rotatly