Rechner für definite und uneigentliche Integrale
Bestimmte und unechte Integrale Schritt für Schritt berechnen
Der Rechner versucht, das definite (d.h. begrenzte) Integral, einschließlich des uneigentlichen, mit den angezeigten Schritten zu berechnen.
Solution
Your input: calculate $$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(3 x^{2} + x - 1\right)d x}=x^{3} + \frac{x^{2}}{2} - x$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}=8$$$
$$$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}-\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=8$$$
Answer: $$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=8$$$