$$$\frac{e^{u}}{v}$$$ 對 $$$u$$$ 的積分
您的輸入
求$$$\int \frac{e^{u}}{v}\, du$$$。
解答
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{v}$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{v} d u}}} = {\color{red}{\frac{\int{e^{u} d u}}{v}}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{v} = \frac{{\color{red}{e^{u}}}}{v}$$
因此,
$$\int{\frac{e^{u}}{v} d u} = \frac{e^{u}}{v}$$
加上積分常數:
$$\int{\frac{e^{u}}{v} d u} = \frac{e^{u}}{v}+C$$
答案
$$$\int \frac{e^{u}}{v}\, du = \frac{e^{u}}{v} + C$$$A
Please try a new game Rotatly