Funktion $$$f{\left(x \right)} = \frac{2}{x}$$$ differenssikvotientti
Syötteesi
Määritä funktiolle $$$f{\left(x \right)} = \frac{2}{x}$$$ differenssiosamäärä.
Ratkaisu
Erotusosamäärä annetaan kaavalla $$$\frac{f{\left(x + h \right)} - f{\left(x \right)}}{h}$$$.
Saadaksesi $$$f{\left(x + h \right)}$$$, sijoita $$$x + h$$$ $$$x$$$:n tilalle: $$$f{\left(x + h \right)} = \frac{2}{x + h}$$$.
Lopuksi $$$\frac{f{\left(x + h \right)} - f{\left(x \right)}}{h} = \frac{\frac{2}{x + h} - \frac{2}{x}}{h} = - \frac{2}{x \left(h + x\right)}$$$.
Vastaus
Funktion $$$f{\left(x \right)} = \frac{2}{x}$$$A erotusosamäärä on $$$- \frac{2}{x \left(h + x\right)}$$$A.
Please try a new game Rotatly