Vector normal unitario principal para $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$
Calculadoras relacionadas: Calculadora del vector tangente unitario, Calculadora de vector binormal unitario
Tu entrada
Encuentre el vector normal principal unitario de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$.
Solución
Para encontrar el vector normal unitario principal, necesitamos encontrar la derivada del vector tangente unitario $$$\mathbf{\vec{T}\left(t\right)}$$$ y luego normalizarla (encontrar el vector unitario).
Halla el vector tangente unitario: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (para los pasos, consulta calculadora del vector tangente unitario).
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, 0\right\rangle$$$ (para los pasos, véase calculadora de derivadas).
Halla el vector unitario: $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t + \frac{\pi}{4} \right)}, \cos{\left(t + \frac{\pi}{4} \right)}, 0\right\rangle$$$ (para los pasos, consulta calculadora de vector unitario).
Respuesta
El vector normal unitario principal es $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t + \frac{\pi}{4} \right)}, \cos{\left(t + \frac{\pi}{4} \right)}, 0\right\rangle$$$A.