Κύριο μοναδιαίο κανονικό διάνυσμα για $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$
Σχετικοί υπολογιστές: Υπολογιστής Μοναδιαίου Εφαπτομενικού Διανύσματος, Υπολογιστής Μοναδιαίου Δικανονικού Διανύσματος
Η είσοδός σας
Βρείτε το κύριο μοναδιαίο κανονικό διάνυσμα για $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$.
Λύση
Για να βρούμε το κύριο μοναδιαίο κανονικό διάνυσμα, πρέπει να βρούμε την παράγωγο του μοναδιαίου εφαπτομενικού διανύσματος $$$\mathbf{\vec{T}\left(t\right)}$$$ και στη συνέχεια να την κανονικοποιήσουμε (να βρούμε το μοναδιαίο διάνυσμα).
Βρείτε το μοναδιαίο εφαπτόμενο διάνυσμα: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής μοναδιαίου εφαπτόμενου διανύσματος).
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, 0\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής παραγώγων).
Βρείτε το μοναδιαίο διάνυσμα: $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t + \frac{\pi}{4} \right)}, \cos{\left(t + \frac{\pi}{4} \right)}, 0\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής μοναδιαίου διανύσματος).
Απάντηση
Το κύριο μοναδιαίο κανονικό διάνυσμα είναι $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \sin{\left(t + \frac{\pi}{4} \right)}, \cos{\left(t + \frac{\pi}{4} \right)}, 0\right\rangle$$$A.