Calculadora vectorial unitaria tangente

Encuentra vectores unitarios tangentes paso a paso

La calculadora encontrará el vector unitario tangente a la función de valor vectorial en el punto dado, con los pasos que se muestran.

Calculadoras relacionadas: Calculadora vectorial normal unitaria, Calculadora vectorial binormal unitaria

$$$\langle$$$ $$$\rangle$$$
Separado por comas.
Deje vacío si no necesita el vector en un punto específico.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Encuentre el vector unitario tangente para $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 2 \sin{\left(t \right)}, 2 \cos{\left(t \right)}, 7\right\rangle$$$.

Solución

Para encontrar el vector unitario tangente, necesitamos encontrar la derivada de $$$\mathbf{\vec{r}\left(t\right)}$$$ (el vector tangente) y luego normalizarlo (encontrar el vector unitario).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$ (para conocer los pasos, consulte calculadora de derivadas).

Encuentre el vector unitario: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$ (para conocer los pasos, consulte calculadora de vector unitario).

Respuesta

El vector unitario tangente es $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$A.