# Unit Tangent Vector Calculator

## Find unit tangent vectors step by step

The calculator will find the unit tangent vector to the vector-valued function at the given point, with steps shown.

Related calculators: Unit Normal Vector Calculator, Unit Binormal Vector Calculator

### Your Input

**Find the unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 2 \sin{\left(t \right)}, 2 \cos{\left(t \right)}, 7\right\rangle$$$.**

### Solution

To find the unit tangent vector, we need to find the derivative of $$$\mathbf{\vec{r}\left(t\right)}$$$ (the tangent vector) and then normalize it (find the unit vector).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$ (for steps, see derivative calculator).

Find the unit vector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$ (for steps, see unit vector calculator).

### Answer

**The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$A.**