Vector tangente unitario para $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$
Calculadoras relacionadas: Calculadora de vector normal unitario, Calculadora de vector binormal unitario
Tu entrada
Encuentre el vector tangente unitario de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$.
Solución
Para hallar el vector tangente unitario, debemos calcular la derivada de $$$\mathbf{\vec{r}\left(t\right)}$$$ (el vector tangente) y luego normalizarla (encontrar el vector unitario).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$ (para los pasos, véase calculadora de derivadas).
Halla el vector unitario: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (para los pasos, consulta calculadora de vector unitario).
Respuesta
El vector tangente unitario es $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle.$$$A