$$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$の単位接ベクトル
関連する計算機: 単位法線ベクトル計算機, 単位従法線ベクトル計算機
入力内容
$$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$ の単位接ベクトルを求めよ。
解答
単位接ベクトルを求めるには、$$$\mathbf{\vec{r}\left(t\right)}$$$(接ベクトル)を微分し、その後それを正規化(単位ベクトルにする)します。
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$(手順についてはderivative calculatorを参照してください)。
次のベクトルの単位ベクトルを求めてください: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (手順は 単位ベクトル計算機 を参照)。
解答
単位接ベクトルは $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$A です。