Enhetstangentvektor för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$

Kalkylatorn kommer att bestämma enhetstangentvektorn till $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$, med steg som visas.

Relaterade kalkylatorer: Räknare för enhetsnormalvektor, Kalkylator för enhetsbinormalvektor

$$$\langle$$$ $$$\rangle$$$
Kommaseparerat.
Lämna tomt om du inte behöver vektorn i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm enhetstangentvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$.

Lösning

För att bestämma enhetstangentvektorn behöver vi ta derivatan av $$$\mathbf{\vec{r}\left(t\right)}$$$ (tangentvektorn) och sedan normalisera den (till en enhetsvektor).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$ (för stegen, se derivataräknare).

Bestäm enhetsvektorn för $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (för steg, se enhetsvektorräknare).

Svar

Enhetstangentvektorn är $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle.$$$A


Please try a new game Rotatly