Vettore tangente unitario di $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$
Calcolatrici correlate: Calcolatore del vettore normale unitario, Calcolatore del vettore binormale unitario
Il tuo input
Trova il vettore tangente unitario per $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{t} \cos{\left(t \right)}, e^{t} \sin{\left(t \right)}, e^{t}\right\rangle$$$.
Soluzione
Per trovare il vettore tangente unitario, dobbiamo calcolare la derivata di $$$\mathbf{\vec{r}\left(t\right)}$$$ (il vettore tangente) e poi normalizzarne il risultato (ottenere il vettore unitario).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \sqrt{2} e^{t} \cos{\left(t + \frac{\pi}{4} \right)}, \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}, e^{t}\right\rangle$$$ (per i passaggi, vedi calcolatore di derivate).
Trova il versore: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$ (per i passaggi, vedi calcolatore di versori).
Risposta
Il vettore tangente unitario è $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}, \frac{\sqrt{3}}{3}\right\rangle.$$$A