Integral von $$$- \frac{e^{- x}}{x}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=-1$$$ und $$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$ an:
$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$
Sei $$$u=- x$$$.
Dann $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = - du$$$.
Das Integral lässt sich umschreiben als
$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
Dieses Integral (Exponentialintegral) besitzt keine geschlossene Form:
$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Zur Erinnerung: $$$u=- x$$$:
$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Daher,
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$
Antwort
$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A