Funktion $$$- \frac{e^{- x}}{x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$:
$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$
Olkoon $$$u=- x$$$.
Tällöin $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.
Siis,
$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
Tällä integraalilla (Eksponentti-integraali) ei ole suljettua muotoa:
$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Muista, että $$$u=- x$$$:
$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Näin ollen,
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$
Lisää integrointivakio:
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$
Vastaus
$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A