Integralen av $$$- \frac{e^{- x}}{x}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=-1$$$ och $$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$:
$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$
Låt $$$u=- x$$$ vara.
Då $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (stegen kan ses »), och vi har att $$$dx = - du$$$.
Integralen blir
$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
Denna integral (Exponentialintegralen) har ingen sluten form:
$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Kom ihåg att $$$u=- x$$$:
$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Alltså,
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$
Svar
$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A