Integral dari $$$- \frac{e^{- x}}{x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=-1$$$ dan $$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$:
$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$
Misalkan $$$u=- x$$$.
Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.
Jadi,
$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
Integral ini (Integral Eksponensial) tidak memiliki bentuk tertutup:
$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Ingat bahwa $$$u=- x$$$:
$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Oleh karena itu,
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$
Jawaban
$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A