Ολοκλήρωμα του $$$- \frac{e^{- x}}{x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-1$$$ και $$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$:
$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$
Έστω $$$u=- x$$$.
Τότε $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - du$$$.
Επομένως,
$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$
Αυτό το ολοκλήρωμα (Εκθετικό Ολοκλήρωμα) δεν έχει κλειστή μορφή:
$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Θυμηθείτε ότι $$$u=- x$$$:
$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$
Επομένως,
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$
Απάντηση
$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A