$$$- \frac{e^{- x}}{x}$$$の積分

この計算機は、手順を示しながら$$$- \frac{e^{- x}}{x}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-1$$$$$$f{\left(x \right)} = \frac{e^{- x}}{x}$$$ に対して適用する:

$${\color{red}{\int{\left(- \frac{e^{- x}}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e^{- x}}{x} d x}\right)}}$$

$$$u=- x$$$ とする。

すると $$$du=\left(- x\right)^{\prime }dx = - dx$$$(手順は»で確認できます)、$$$dx = - du$$$ となります。

したがって、

$$- {\color{red}{\int{\frac{e^{- x}}{x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{u} d u}}}$$

この積分(指数積分)には閉形式はありません:

$$- {\color{red}{\int{\frac{e^{u}}{u} d u}}} = - {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$

次のことを思い出してください $$$u=- x$$$:

$$- \operatorname{Ei}{\left({\color{red}{u}} \right)} = - \operatorname{Ei}{\left({\color{red}{\left(- x\right)}} \right)}$$

したがって、

$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}$$

積分定数を加える:

$$\int{\left(- \frac{e^{- x}}{x}\right)d x} = - \operatorname{Ei}{\left(- x \right)}+C$$

解答

$$$\int \left(- \frac{e^{- x}}{x}\right)\, dx = - \operatorname{Ei}{\left(- x \right)} + C$$$A


Please try a new game Rotatly