Implizite Ableitung von $$$\ln\left(y\right) = x \ln\left(2\right)$$$ nach $$$x$$$
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$.
Lösung
Leite beide Seiten der Gleichung getrennt ab (betrachte $$$y$$$ als Funktion von $$$x$$$): $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$.
Leite die linke Seite der Gleichung ab.
Die Funktion $$$\ln\left(y{\left(x \right)}\right)$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(x \right)} = y{\left(x \right)}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Zurück zur ursprünglichen Variable:
$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$Somit gilt $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$.
Leite die rechte Seite der Gleichung ab.
Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = \ln\left(2\right)$$$ und $$$f{\left(x \right)} = x$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$Somit gilt $$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$.
Daher haben wir die folgende lineare Gleichung bezüglich der Ableitung erhalten: $$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$.
Beim Lösen ergibt sich, dass $$$\frac{dy}{dx} = y \ln\left(2\right)$$$.
Antwort
$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A