$$$\ln\left(y\right) = x \ln\left(2\right)$$$$$$x$$$ 的隱式導數

此計算器將求出隱函數 $$$\ln\left(y\right) = x \ln\left(2\right)$$$ 相對於 $$$x$$$ 的一階與二階導數,並顯示步驟。
$$$($$$
,
$$$)$$$
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$

解答

分別對等式兩邊求導(將 $$$y$$$ 視為 $$$x$$$ 的函數):$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$

對等式左邊求導數。

函數 $$$\ln\left(y{\left(x \right)}\right)$$$ 是兩個函數 $$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = y{\left(x \right)}$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

自然對數的導數為 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

返回原變數:

$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$

因此,$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$

對等式右邊求導。

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = \ln\left(2\right)$$$$$$f{\left(x \right)} = x$$$

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$

因此,我們得到以下關於導數的線性方程:$$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$

解得 $$$\frac{dy}{dx} = y \ln\left(2\right)$$$

答案

$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A


Please try a new game Rotatly