$$$\ln\left(y\right) = x \ln\left(2\right)$$$ 對 $$$x$$$ 的隱式導數
您的輸入
求$$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$。
解答
分別對等式兩邊求導(將 $$$y$$$ 視為 $$$x$$$ 的函數):$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$。
對等式左邊求導數。
函數 $$$\ln\left(y{\left(x \right)}\right)$$$ 是兩個函數 $$$f{\left(u \right)} = \ln\left(u\right)$$$ 與 $$$g{\left(x \right)} = y{\left(x \right)}$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$。
應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$自然對數的導數為 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$返回原變數:
$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$因此,$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$。
對等式右邊求導。
套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = \ln\left(2\right)$$$ 與 $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$。
因此,我們得到以下關於導數的線性方程:$$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$。
解得 $$$\frac{dy}{dx} = y \ln\left(2\right)$$$。
答案
$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A