Turunan implisit dari $$$\ln\left(y\right) = x \ln\left(2\right)$$$ terhadap $$$x$$$

Kalkulator akan menghitung turunan pertama dan kedua dari fungsi implisit $$$\ln\left(y\right) = x \ln\left(2\right)$$$ terhadap $$$x$$$, beserta langkah-langkahnya.
$$$($$$
,
$$$)$$$
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$.

Solusi

Turunkan secara terpisah kedua ruas persamaan (anggap $$$y$$$ sebagai fungsi dari $$$x$$$): $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$.

Turunkan ruas kiri dari persamaan.

Fungsi $$$\ln\left(y{\left(x \right)}\right)$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \ln\left(u\right)$$$ dan $$$g{\left(x \right)} = y{\left(x \right)}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

Kembalikan ke variabel semula:

$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$

Dengan demikian, $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$.

Turunkan ruas kanan persamaan.

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = \ln\left(2\right)$$$ dan $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$

Dengan demikian, $$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$.

Dengan demikian, kita memperoleh persamaan linier berikut terhadap turunan: $$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$.

Dengan menyelesaikannya, kita memperoleh bahwa $$$\frac{dy}{dx} = y \ln\left(2\right)$$$.

Jawaban

$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A


Please try a new game Rotatly