$$$\ln\left(y\right) = x \ln\left(2\right)$$$ 关于 $$$x$$$ 的隐式导数

该计算器将求出隐函数 $$$\ln\left(y\right) = x \ln\left(2\right)$$$ 关于 $$$x$$$ 的一阶和二阶导数,并显示步骤。
$$$($$$
,
$$$)$$$
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$

解答

分别对等式两边求导(将 $$$y$$$ 视为 $$$x$$$ 的函数):$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$

对方程的左边求导。

函数$$$\ln\left(y{\left(x \right)}\right)$$$是两个函数$$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = y{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$

返回到原变量:

$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$

因此,$$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$

对等式右边求导。

$$$c = \ln\left(2\right)$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$

应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$

$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$

因此,我们得到如下关于导数的线性方程:$$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$

解得:$$$\frac{dy}{dx} = y \ln\left(2\right)$$$

答案

$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A


Please try a new game Rotatly