Derivata implicita di $$$\ln\left(y\right) = x \ln\left(2\right)$$$ rispetto a $$$x$$$
Il tuo input
Trova $$$\frac{d}{dx} \left(\ln\left(y\right) = x \ln\left(2\right)\right)$$$.
Soluzione
Deriva separatamente entrambi i membri dell'equazione (tratta $$$y$$$ come funzione di $$$x$$$): $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{d}{dx} \left(x \ln\left(2\right)\right)$$$.
Deriva il membro sinistro dell’equazione.
La funzione $$$\ln\left(y{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = y{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{{\color{red}\left(y{\left(x \right)}\right)}}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(y{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(y{\left(x \right)}\right)}{y{\left(x \right)}}$$$.
Deriva il membro destro dell’equazione.
Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \ln\left(2\right)$$$ e $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(2\right)\right)\right)} = {\color{red}\left(\ln\left(2\right) \frac{d}{dx} \left(x\right)\right)}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\ln\left(2\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \ln\left(2\right) {\color{red}\left(1\right)}$$Quindi, $$$\frac{d}{dx} \left(x \ln\left(2\right)\right) = \ln\left(2\right)$$$.
Pertanto, abbiamo ottenuto la seguente equazione lineare rispetto alla derivata: $$$\frac{\frac{dy}{dx}}{y} = \ln\left(2\right)$$$.
Risolvendo, otteniamo che $$$\frac{dy}{dx} = y \ln\left(2\right)$$$.
Risposta
$$$\frac{dy}{dx} = y \ln\left(2\right)$$$A