Integral of $$$x^{p - 1} e^{- x}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{p - 1} e^{- x}\, dx$$$.
Solution
This integral (Incomplete Gamma Function) does not have a closed form:
$${\color{red}{\int{x^{p - 1} e^{- x} d x}}} = {\color{red}{\left(- \Gamma\left(p, x\right)\right)}}$$
Therefore,
$$\int{x^{p - 1} e^{- x} d x} = - \Gamma\left(p, x\right)$$
Add the constant of integration:
$$\int{x^{p - 1} e^{- x} d x} = - \Gamma\left(p, x\right)+C$$
Answer
$$$\int x^{p - 1} e^{- x}\, dx = - \Gamma\left(p, x\right) + C$$$A
Please try a new game Rotatly