Integral of $$$\frac{e^{t}}{t}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{t}}{t}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\frac{e^{t}}{t}$$$:
$${\color{red}{\int{\frac{e^{t}}{t} d x}}} = {\color{red}{\frac{x e^{t}}{t}}}$$
Therefore,
$$\int{\frac{e^{t}}{t} d x} = \frac{x e^{t}}{t}$$
Add the constant of integration:
$$\int{\frac{e^{t}}{t} d x} = \frac{x e^{t}}{t}+C$$
Answer
$$$\int \frac{e^{t}}{t}\, dx = \frac{x e^{t}}{t} + C$$$A
Please try a new game Rotatly