Integral of $$$\frac{x}{- a + b}$$$ with respect to $$$f$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{- a + b}\, df$$$.
Solution
Apply the constant rule $$$\int c\, df = c f$$$ with $$$c=\frac{x}{- a + b}$$$:
$${\color{red}{\int{\frac{x}{- a + b} d f}}} = {\color{red}{\frac{f x}{- a + b}}}$$
Therefore,
$$\int{\frac{x}{- a + b} d f} = \frac{f x}{- a + b}$$
Add the constant of integration:
$$\int{\frac{x}{- a + b} d f} = \frac{f x}{- a + b}+C$$
Answer
$$$\int \frac{x}{- a + b}\, df = \frac{f x}{- a + b} + C$$$A
Please try a new game Rotatly