Integral of $$$\frac{e^{- y}}{y}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{- y}}{y}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\frac{e^{- y}}{y}$$$:
$${\color{red}{\int{\frac{e^{- y}}{y} d x}}} = {\color{red}{\frac{x e^{- y}}{y}}}$$
Therefore,
$$\int{\frac{e^{- y}}{y} d x} = \frac{x e^{- y}}{y}$$
Add the constant of integration:
$$\int{\frac{e^{- y}}{y} d x} = \frac{x e^{- y}}{y}+C$$
Answer
$$$\int \frac{e^{- y}}{y}\, dx = \frac{x e^{- y}}{y} + C$$$A
Please try a new game Rotatly