Integral of $$$u^{\alpha - 2} e^{- u}$$$ with respect to $$$u$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int u^{\alpha - 2} e^{- u}\, du$$$.
Solution
This integral (Incomplete Gamma Function) does not have a closed form:
$${\color{red}{\int{u^{\alpha - 2} e^{- u} d u}}} = {\color{red}{\left(- \Gamma\left(\alpha - 1, u\right)\right)}}$$
Therefore,
$$\int{u^{\alpha - 2} e^{- u} d u} = - \Gamma\left(\alpha - 1, u\right)$$
Add the constant of integration:
$$\int{u^{\alpha - 2} e^{- u} d u} = - \Gamma\left(\alpha - 1, u\right)+C$$
Answer
$$$\int u^{\alpha - 2} e^{- u}\, du = - \Gamma\left(\alpha - 1, u\right) + C$$$A
Please try a new game Rotatly