$$$d^{2} e^{t}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int d^{2} e^{t}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=d^{2}$$$ 與 $$$f{\left(t \right)} = e^{t}$$$:
$${\color{red}{\int{d^{2} e^{t} d t}}} = {\color{red}{d^{2} \int{e^{t} d t}}}$$
指數函數的積分為 $$$\int{e^{t} d t} = e^{t}$$$:
$$d^{2} {\color{red}{\int{e^{t} d t}}} = d^{2} {\color{red}{e^{t}}}$$
因此,
$$\int{d^{2} e^{t} d t} = d^{2} e^{t}$$
加上積分常數:
$$\int{d^{2} e^{t} d t} = d^{2} e^{t}+C$$
答案
$$$\int d^{2} e^{t}\, dt = d^{2} e^{t} + C$$$A
Please try a new game Rotatly