Integral de $$$2 e^{2 t - 4 u}$$$ em relação a $$$t$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int 2 e^{2 t - 4 u}\, dt$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=2$$$ e $$$f{\left(t \right)} = e^{2 t - 4 u}$$$:
$${\color{red}{\int{2 e^{2 t - 4 u} d t}}} = {\color{red}{\left(2 \int{e^{2 t - 4 u} d t}\right)}}$$
Seja $$$v=2 t - 4 u$$$.
Então $$$dv=\left(2 t - 4 u\right)^{\prime }dt = 2 dt$$$ (veja os passos »), e obtemos $$$dt = \frac{dv}{2}$$$.
Assim,
$$2 {\color{red}{\int{e^{2 t - 4 u} d t}}} = 2 {\color{red}{\int{\frac{e^{v}}{2} d v}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = e^{v}$$$:
$$2 {\color{red}{\int{\frac{e^{v}}{2} d v}}} = 2 {\color{red}{\left(\frac{\int{e^{v} d v}}{2}\right)}}$$
A integral da função exponencial é $$$\int{e^{v} d v} = e^{v}$$$:
$${\color{red}{\int{e^{v} d v}}} = {\color{red}{e^{v}}}$$
Recorde que $$$v=2 t - 4 u$$$:
$$e^{{\color{red}{v}}} = e^{{\color{red}{\left(2 t - 4 u\right)}}}$$
Portanto,
$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}$$
Adicione a constante de integração:
$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}+C$$
Resposta
$$$\int 2 e^{2 t - 4 u}\, dt = e^{2 t - 4 u} + C$$$A