Integral dari $$$2 e^{2 t - 4 u}$$$ terhadap $$$t$$$

Kalkulator akan menemukan integral/antiturunan dari $$$2 e^{2 t - 4 u}$$$ terhadap $$$t$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 2 e^{2 t - 4 u}\, dt$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=2$$$ dan $$$f{\left(t \right)} = e^{2 t - 4 u}$$$:

$${\color{red}{\int{2 e^{2 t - 4 u} d t}}} = {\color{red}{\left(2 \int{e^{2 t - 4 u} d t}\right)}}$$

Misalkan $$$v=2 t - 4 u$$$.

Kemudian $$$dv=\left(2 t - 4 u\right)^{\prime }dt = 2 dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dt = \frac{dv}{2}$$$.

Oleh karena itu,

$$2 {\color{red}{\int{e^{2 t - 4 u} d t}}} = 2 {\color{red}{\int{\frac{e^{v}}{2} d v}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(v \right)} = e^{v}$$$:

$$2 {\color{red}{\int{\frac{e^{v}}{2} d v}}} = 2 {\color{red}{\left(\frac{\int{e^{v} d v}}{2}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{v} d v} = e^{v}$$$:

$${\color{red}{\int{e^{v} d v}}} = {\color{red}{e^{v}}}$$

Ingat bahwa $$$v=2 t - 4 u$$$:

$$e^{{\color{red}{v}}} = e^{{\color{red}{\left(2 t - 4 u\right)}}}$$

Oleh karena itu,

$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}$$

Tambahkan konstanta integrasi:

$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}+C$$

Jawaban

$$$\int 2 e^{2 t - 4 u}\, dt = e^{2 t - 4 u} + C$$$A


Please try a new game Rotatly