Integral of $$$2 e^{2 t - 4 u}$$$ with respect to $$$t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 e^{2 t - 4 u}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=2$$$ and $$$f{\left(t \right)} = e^{2 t - 4 u}$$$:
$${\color{red}{\int{2 e^{2 t - 4 u} d t}}} = {\color{red}{\left(2 \int{e^{2 t - 4 u} d t}\right)}}$$
Let $$$v=2 t - 4 u$$$.
Then $$$dv=\left(2 t - 4 u\right)^{\prime }dt = 2 dt$$$ (steps can be seen »), and we have that $$$dt = \frac{dv}{2}$$$.
So,
$$2 {\color{red}{\int{e^{2 t - 4 u} d t}}} = 2 {\color{red}{\int{\frac{e^{v}}{2} d v}}}$$
Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = e^{v}$$$:
$$2 {\color{red}{\int{\frac{e^{v}}{2} d v}}} = 2 {\color{red}{\left(\frac{\int{e^{v} d v}}{2}\right)}}$$
The integral of the exponential function is $$$\int{e^{v} d v} = e^{v}$$$:
$${\color{red}{\int{e^{v} d v}}} = {\color{red}{e^{v}}}$$
Recall that $$$v=2 t - 4 u$$$:
$$e^{{\color{red}{v}}} = e^{{\color{red}{\left(2 t - 4 u\right)}}}$$
Therefore,
$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}$$
Add the constant of integration:
$$\int{2 e^{2 t - 4 u} d t} = e^{2 t - 4 u}+C$$
Answer
$$$\int 2 e^{2 t - 4 u}\, dt = e^{2 t - 4 u} + C$$$A