Integral von $$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$.
Lösung
Sei $$$u=\tan{\left(x \right)}$$$.
Dann $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sec^{2}{\left(x \right)} dx = du$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
Das Integral der Exponentialfunktion lautet $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Zur Erinnerung: $$$u=\tan{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$
Daher,
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$
Antwort
$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A