Integral dari $$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$.
Solusi
Misalkan $$$u=\tan{\left(x \right)}$$$.
Kemudian $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(x \right)} dx = du$$$.
Oleh karena itu,
$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Ingat bahwa $$$u=\tan{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$
Oleh karena itu,
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$
Tambahkan konstanta integrasi:
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$
Jawaban
$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A