$$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$.
Çözüm
$$$u=\tan{\left(x \right)}$$$ olsun.
Böylece $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (adımlar » görülebilir) ve $$$\sec^{2}{\left(x \right)} dx = du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Hatırlayın ki $$$u=\tan{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$
Dolayısıyla,
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$
Cevap
$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A