$$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$。
解答
令 $$$u=\tan{\left(x \right)}$$$。
則 $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(x \right)} dx = du$$$。
因此,
$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回顧一下 $$$u=\tan{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$
因此,
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$
加上積分常數:
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$
答案
$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A