Intégrale de $$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$.
Solution
Soit $$$u=\tan{\left(x \right)}$$$.
Alors $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(x \right)} dx = du$$$.
Par conséquent,
$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{u} d u} = e^{u}$$$ :
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Rappelons que $$$u=\tan{\left(x \right)}$$$ :
$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$
Par conséquent,
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$
Ajouter la constante d'intégration :
$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$
Réponse
$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A