$$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$ 的积分

该计算器将求出$$$e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (步骤见»),并有$$$\sec^{2}{\left(x \right)} dx = du$$$

因此,

$${\color{red}{\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$

指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$

$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$

回忆一下 $$$u=\tan{\left(x \right)}$$$:

$$e^{{\color{red}{u}}} = e^{{\color{red}{\tan{\left(x \right)}}}}$$

因此,

$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}$$

加上积分常数:

$$\int{e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)} d x} = e^{\tan{\left(x \right)}}+C$$

答案

$$$\int e^{\tan{\left(x \right)}} \sec^{2}{\left(x \right)}\, dx = e^{\tan{\left(x \right)}} + C$$$A


Please try a new game Rotatly