Integral of $$$e^{\frac{u}{v}}$$$ with respect to $$$u$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{\frac{u}{v}}\, du$$$.
Solution
Let $$$w=\frac{u}{v}$$$.
Then $$$dw=\left(\frac{u}{v}\right)^{\prime }du = \frac{du}{v}$$$ (steps can be seen »), and we have that $$$du = v dw$$$.
The integral becomes
$${\color{red}{\int{e^{\frac{u}{v}} d u}}} = {\color{red}{\int{v e^{w} d w}}}$$
Apply the constant multiple rule $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ with $$$c=v$$$ and $$$f{\left(w \right)} = e^{w}$$$:
$${\color{red}{\int{v e^{w} d w}}} = {\color{red}{v \int{e^{w} d w}}}$$
The integral of the exponential function is $$$\int{e^{w} d w} = e^{w}$$$:
$$v {\color{red}{\int{e^{w} d w}}} = v {\color{red}{e^{w}}}$$
Recall that $$$w=\frac{u}{v}$$$:
$$v e^{{\color{red}{w}}} = v e^{{\color{red}{\frac{u}{v}}}}$$
Therefore,
$$\int{e^{\frac{u}{v}} d u} = v e^{\frac{u}{v}}$$
Add the constant of integration:
$$\int{e^{\frac{u}{v}} d u} = v e^{\frac{u}{v}}+C$$
Answer
$$$\int e^{\frac{u}{v}}\, du = v e^{\frac{u}{v}} + C$$$A