$$$2 x e^{x^{2}}$$$ 的積分
您的輸入
求$$$\int 2 x e^{x^{2}}\, dx$$$。
解答
令 $$$u=x^{2}$$$。
則 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{2 x e^{x^{2}} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回顧一下 $$$u=x^{2}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{x^{2}}}}$$
因此,
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}$$
加上積分常數:
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}+C$$
答案
$$$\int 2 x e^{x^{2}}\, dx = e^{x^{2}} + C$$$A
Please try a new game Rotatly