$$$2 x e^{x^{2}}$$$ 的积分
您的输入
求$$$\int 2 x e^{x^{2}}\, dx$$$。
解答
设$$$u=x^{2}$$$。
则$$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$。
所以,
$${\color{red}{\int{2 x e^{x^{2}} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回忆一下 $$$u=x^{2}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{x^{2}}}}$$
因此,
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}$$
加上积分常数:
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}+C$$
答案
$$$\int 2 x e^{x^{2}}\, dx = e^{x^{2}} + C$$$A
Please try a new game Rotatly